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Abstract

We present some reflections on the links between drift, diffusion and geometry. For this purpose,
we examine different sources of “diffusion models”, in physics and in mathematics. We observe that
diffusion processes may arise from original models either deterministic, or random but where dynam-
ics and noise are clearly delineated. In the end, we get a diffusion process where noise and dynamics
(“drift”) are generally intimately entangled in a second-order partial differential operator. We focus on
the following questions. Are there implicit geometric structures to properly define a diffusion? How are
drift/dynamics and diffusion mixed? Are there geometric structures needed to separate drift and dif-
fusion? We stress the importance of recurrent differential geometric structures – connections and Rie-
mannian metrics – needed to properly define a “diffusion term” and also to separate drift from diffusion.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a set of particles in movement. One may say that drift is a general trend
followed by these particles, while diffusion is random wandering. Going beyond words,
there are different mathematical objects to capture the ideas of drift and diffusion.
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Concerning diffusion, Laplacian� and Brownian motion are intimately related. The
Brownian motion may be seen as the prototype of continuous time noise. This diffusion
process shares, with its infinitesimal generator1

2�, strong spatial symmetries as the invari-
ance by the Euclidian group. It is a sort of “pure noise” onRn, in the sense that no direction
is privileged (isotropy, absence of drift). The drift is generally a vector field, giving direc-
tion to the solutions of an ordinary differential equation or driving the partial differential
equation (pde) equation for the density.

We shall make a brief review of different sources of “diffusion models”. We shall focus
on the following questions:

(1) are there implicit geometric structures to properly define a diffusion?
(2) how are drift and diffusion mixed?
(3) are there geometric structures needed to separate drift and diffusion?

We shall see that diffusion processes may arise from original models either determin-
istic, or random but where dynamics and noise are clearly delineated. In the end, we get
a diffusion process where noise and dynamics (“drift”) are generally intimately entan-
gled, either in a second-order partial differential operator, or in a stochastic differential
equation. We shall question this linkage and examine the geometric structures that may
be needed to properly define a “diffusion term” and also to separate drift from diffusion.
We shall also observe recurrent differential geometric structures: connections, Riemannian
metrics.

This paper originates from reflections following a series of papers[1–5]. Classically
associating a Riemannian metricg to a nondegenerate elliptic operatorL on a manifold
M [6], we exploited geometric properties of the Riemannian manifold (M, g) to exhibit
properties of the diffusion process with infinitesimal generatorL, and study various types
of problem (symmetries, finite dimensional filters, group invariant solutions). Starting from
stochastic problems formulated in terms of diffusion and drift, we were thus led to geometric
problems: therefore, our reflection focused on the link between drift/diffusion and geometry.
This paper is a tentative review to clarify the question.

Section2 collects the mathematical background which will appear recurrently. In Sec-
tions3 and 4, we revisit two physical models of diffusion – Fick’s law and deterministic
interacting particles systems – and we focus on the role of underlying geometric structures.
Then, in Section5, we examine diffusion processes and stochastic differential equations
under the same geometrical angle. After having seen examples of how noise and dynamics
entangle and the role of geometric structures, we turn to the reverse problem in Section6.
We shall examine operations to disentangle noise and dynamics, and try to properly define
the “drift” of a diffusion process. In conclusion, we sum up our observations and sketch
some recurrent facts.

2. Mathematical background

We collect here the main mathematical background needed in the sequel. In what follows,
M is a smooth manifold.
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2.1. Connection on a manifold (of dimension n)

A connection on a manifoldM is any of the three following objects:

(1) A linear mapping Hess from smooth functions onM to symmetric bilinear forms on
M , such that for all smooth functionϕ [12, p. 32]:

Hess(ϕ2) = 2ϕ Hess(ϕ) + 2 dϕ ⊗ 2 dϕ. (1)

(2) A C∞-linear mappingF from τ2M – the space oftangent vectors of order 2 (smooth
fields of second-order differential operatorsL, with no zero order term) – toτ1M – the
space of vector fields, that is tangent vectors of order 1 (smooth fields of first-order
differential operatorsL, with no zero order term) – such that[12, p. 105]:

F : τ2M→ τ1M, F (f ) = f for f ∈ τ1M. (2)

(3) A covariant derivativeD onM, that is a linear mapping

τ1M× τ1M→ τ1M, (f, g) �→ Df g (3)

which is punctual in the first argument and a derivative in the second argument.

Equivalence between these definitions comes from the following formulas[12, p. 35],
wheref andg are vector fields onM, ϕ is a smooth function onM:

Hessϕ(f, g) = fgϕ − (Df g)ϕ and Df g = F (fg). (4)

In the above equations,fg is a second-order differential operator with no zero order term,
andDf g is a vector field.

To emphasize that a vector fieldf may be seen as a first-order differential operator with
no zero order term, we shall often use the notationLf for the Lie differential along the
vector field f. In coordinates, if

f =
n∑

i=1

f i(x)
∂

∂xi

(5)

andϕ is a smooth function onM, we have, for allx ∈M:

(Lf ϕ)(x) = (fϕ)(x) = 〈f, dϕ〉(x) =
n∑

i=1

f i(x)
∂ϕ

∂xi

(x). (6)

With obvious notations, we have

(LfLgϕ)(x) = (fgϕ)(x) =
∑
i,j

gj(x)f i(x)
∂2ϕ

∂xi∂xj

(x) +
∑
i,j

f i(x)
∂gj

∂xi

(x)
∂ϕ

∂xj

(x).

2.2. Riemannian manifold

Let us assume thatM carries a Riemannian metricg: (M, g) is a Riemannian manifold.
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2.2.1. Codifferential
The Hodge duality star-operator∗ mapsk-forms on (n − k)-forms (see[7, p. 457]).
For instance, wheng = dx2 + dy2 + dz2 is the Euclidian flat metrics onR3, we

have∗dx = dy ∧ dz,∗dy = −dx ∧ dz,∗dz = dx ∧ dy, and∗(dy ∧ dz) = dx,∗(dx ∧ dz) =
−dy, ∗(dx ∧ dy) = dz.

The codifferential δ is obtained from the Hodge duality star-operator∗ and, when re-
stricted ton-forms, is given by the formula[7, p. 457]:

δ = − ∗ d ∗ . (7)

When g = dx2 + dy2 + dz2 and α = a dy ∧ dz − b dx ∧ dz + c dx ∧ dy, then δα =
(cy − bz)dx + (az − cx)dy + (bx − ay) dz, wherecy = ∂c

∂y
, etc.

2.2.2. Laplace–Beltrami operator
TheLaplace–Beltrami operator is given by

�g = divg∇g = ∗d ∗ d. (8)

Wheng = dx2 + dy2 + dz2, �g = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

2.2.3. Levi–Civita connection
There exists a unique connectionD such thatDg = 0: this is the so calledLevi–

Civita connection [19]. The associatedC∞-linear mappingFg from τ2M to τ1M satisfies
Fg(�g) = 0 [12, p. 105].

Wheng = dx2 + dy2 + dz2, D ∂
∂x

∂
∂x

= D ∂
∂x

∂
∂y

= D ∂
∂x

∂
∂z

= 0, and the same for all other

coordinates (the Levi–Civita connection is flat).

2.3. Diffusion processes on a smooth manifold

We briefly recall here the definition of a diffusion on a smooth manifold and of its
infinitesimal generator[11, p. 202]. Let (�,F,P) be a filtered probability space, satisfying
the usual conditions (when the filtration is not specified, it is that generated by the diffusion).
Let alsoL be an elliptic partial differential operator on the manifoldM, written in a given
coordinate systemx1, . . . ,xn as

L = 1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj

+
n∑

i=1

bi(x)
∂

∂xi

. (9)

LetM′ =M ∪ {ϑ}, whereϑ is a terminal point. By convention, any smoothϕ onM extends
to M′ by ϕ(ϑ) = ϑ and any transformationφ from M to M extends fromM′ to M′ by
φ(ϑ) = ϑ. Let (ξ) be a family (ξx)x∈M ofM′-valued,F-adapted stochastic processes such
that

(1) a.s.,ξx(0) = x,
(2) a.s., there existsζ(ω) ∈ [0, +∞] such that
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(a) t ∈ [0, ζ(ω)) �→ ξx(t) is continuous,
(b) ξx(t) = ϑ for t ≥ ζ,

(3) for all continuous bounded functionϕ onM′,

Mϕ(t) = ϕ(ξx(t)) − ϕ(ξx(0)) −
∫ t

0
(Lϕ)(ξx(s)) ds

is a martingale.

The process (ξx) is said to be adiffusion with infinitesimal generator L and starting at x.
WhenM = Rn, the n-dimensionalBrownian motion is a diffusion with infinitesimal

generator12� = 1
2

∑n
i=1

∂2

∂x2
i

.

2.4. Stochastic differential equations on a manifold

Stochastic differential equations (sde ) give rise to diffusion processes. For the geo-
metrical aspects, our main reference here is Emery’s book[12], and we shall follow its
notations.

LetTyM denote the tangent space aty ∈M, τ1M the space of vector fields onM (tangent
vectors of order 1), andτ

1M the space of 1-forms onM. Letg0, g1, . . . ,gm be vector fields
onM, and (B1

t , . . . , B
m
t )t≥0 be a Brownian motion onRm.

In the sequel, when we writeRt = St , where (Rt)t≥0 and (St)t≥0 are stochastic processes,
this meansP(∀t ≥ 0, Rt = St) = 1.

2.4.1. Stratonovich stochastic differential equations
Defining a Stratonovichsde on a manifold does not require any particular geometric

structure. One starts from the definition of the Stratonovich integral of semi-martingales
with respect to a semi-martingale, then gives meaning to the Stratonovichsde

dYt = g0(Yt) dt +
m∑

l=1

gl(Yt) ◦ dBl
t (10)

as follows. A process (Yt) onM satisfies the Stratonovichsde (10) if and only if, for all
smooth functionϕ with compact support onM, we have[11, p. 248]:

ϕ(Yt) − ϕ(Y0) =
∫ t

0
Lg0ϕ(Ys) ds +

m∑
l=1

∫ t

0
Lgl

ϕ(Ys) ◦ dBl
s, (11)

where the last integral is a Stratonovich integral.
To thesde (10), we may associate a diffusion process with infinitesimal generator

L = Lf + 1

2

m∑
j=1

L2
gj

(12)
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that is

∀ ϕ ∈ C∞(M), Lϕ = Lf ϕ + 1

2

m∑
j=1

Lgj (Lgjϕ). (13)

2.4.2. Itô stochastic differential equations
To properly define an Itô stochastic differential equation, Emery claims that one needs

an additionnal geometric structure known as connection. Indeed,without connection, you
cannot define a martingale on a manifold.

Emery defines the Itô integral
∫ 〈α, F dY〉 of a 1-formα along a semi-martingaleY and

the integral
∫

b(dY, dY ) of a bilinear formb [12, Chapter VI]. For the case whenα = dϕ

andb = Hessϕ (ϕ is a smooth function), this allows to give meaning to the following Itô
sde :

dYt = g0(Yt) dt +
m∑

l=1

gl(Yt) dBl
t. (14)

One says that a process (Yt)t≥0 onM satisfies the It̂o sde (14) if and only if, for all smooth
functionϕ with compact support onM, we have[12, p. 109]:

ϕ(Yt) − ϕ(Y0) − 1

2

∫ t

0
Hessϕ(dYs, dYs)

=
∫ t

0
Lg0ϕ(Ys) ds +

m∑
l=1

∫ t

0
Lgl

ϕ(Ys) dBl
s. (15)

3. Geometric structures in Fick’s law of diffusion

Consider a moving fluid in a domain ofR3, described by its concentrationc(x) ∈ R+ and
speedv(x) ∈ R3 at each pointx of the domain (we follow[7]). The mass balance equation
gives the following first-orderpde:

∂c

∂t
+ div(cv) = 0. (16)

The speedv is a vector field representing the transport dynamics.
Diffusion is usually modeled as an additional term

diffusion term= −k∇c (k > 0). (17)

This isFick’s law. The mass balance equation now gives the following parabolicpde:

∂c

∂t
+ div(cv − k∇c) = 0. (18)

Since div∇ = �, the Laplacian onR3, diffusion is associated with a parabolicpde:

∂c

∂t
+ div(cv) − k �c = 0. (19)
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3.1. Implicit geometric structures in Fick’s law

We examine here the geometric structures adapted to the description of an advection
phenomenon, then of a diffusion phenomenon.

In the model above, mention is implicitly made of two geometric objects:

(1) a differential 3-form or volume form (the volume form dxdydz onR3) that allows to
define the concentrationc as a density; to this volume form is directly associated a
divergence operator (div= ∂/∂x + ∂/∂y + ∂/∂z onR3);

(2) a Riemannian metric (the flat metric dx2 + dy2 + dz2 onR3) that allows to define the
gradient∇, and thus to linearly associate a vector field (∇c) to a function (c) as in Fick’s
law (17).

Thus, to describe the transport phenomenon (dynamics), one only needs a volume form.
But, the representation of the diffusion phenomenon requires a richer structure, here a metric
(and its associated volume form): indeed,Fick’s law – by its expression in −k∇c – implicitly
refers to a Riemannian metric allowing to define a gradient.

3.2. Diffusion may be represented by a (n − 1)-form

We shall now extend the above remarks in a more general analysis.
Let be given a smooth manifoldM and a vector fieldv onM, which characterize the

dynamics of a system (˙x = v(x)). Suppose also thatM is orientable and supports a volume
form µ, that allows to define densities.

If W is a smooth sub-domain ofM, we assume that the fluid mass contained inW at
time t is

∫
W

ctµ, wherec(t, x) = ct(x) is a smooth positive function on [0, +∞[×M (the
concentrationct is a mass density). Then-form ctµ may thus be seen as a mass distribution
on the smooth manifoldM: ctµ carries an intrinsic physical meaning, more than ct which
depends of the choice of a reference volume formµ.

Let (φt)t≥0 denote the flow associated to the dynamicsv. The displacement of the vol-
umeW into φt(W) and mass conservation are expressed via the volume integrals

∫
W

c0µ

and
∫
φt (W) ctµ. On the other hand, themass exchange by diffusion is represented by a

surface integral
∫ t

0 ds
∫
∂φs(W) α. The termα is a (n − 1)-form which models the diffusion

phenomenon. Mass conservation then gives(
∂ct

∂t
+ div(ctv)

)
µ = dα, (20)

where we have used Stokes’ theorem
∫
∂W

α = ∫
W

dα. Thus, to model diffusion and “close”
Eq. (20) with respect toct , we need to express the (n − 1)-formα as a function ofct . This
“closure” may be done in a linear way as follows.

3.3. A proposal of linear diffusion model requiring a Riemannian metric

By a linear diffusion model, we mean an intrinsic way of linearly associating a (n − 1)-
form α (or an exactn-form dα) to then-form cµ (intrinsic mass distribution). Now, this
operation is far from being natural without additional structure.
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Indeed, the exterior differential operator d on exterior forms allows to “go up” from 0-
forms to 1-forms, from 1-forms to 2-forms,. . . ,from (n − 1)-forms ton-forms. But, without
additional geometric structure, there is no natural “descending” operator fromn-forms to
(n − 1)-forms.

However, if the smooth manifoldM is equipped with a Riemannian metricg, there exists
a “descending” operatorδ, the exterior codifferential which mapsn-forms to (n − 1)-forms,
(n − 1)-forms to (n − 2)-forms,. . . , 1-forms to 0-forms.

Let us now assume thatM carries a Riemannian metricg, and show what a linear diffu-
sion model may be, by making use of the exterior codifferentialδ introduced in Section2.2.
If c is a smooth nonnegative function, representing concentration with respect to the Rie-
mannian volume form (up to a multiplicative constant), we propose to model the diffusion
phenomenon by the following (n − 1)-formα:

“diffusion” = α = −δ(c�g). (21)

An easy computation[7, p. 427] shows that

dα = −dδ(c�g) = d ∗ d ∗ (c�g) = d ∗ dc = (�gc)�g (22)

since∗�g = 1 and where�g = divg ∇g = ∗d ∗ d is the Laplace–Beltrami operator. Re-
placing this latter expression in(20) with µ = �g, we get a parabolicpde satisfied by the
concentrationct :

∂ct

∂t
+ divg(ctv) = �gct. (23)

3.4. How we can recover Fick’s law

Eq.(23)hereabove may be written as

∂ct

∂t
+ divg(ctv − ∇gct) = 0. (24)

One thus recognizes a more traditional interpretation of diffusion as gradient of the con-
centrationc. This appears also when we write the diffusion flux through a surface by[7, p.
484]: ∫

∂W

α =
∫

W

dα =
∫

W

(�gc)�g =
∫

W

(divg ∇gc)�g =
∫

∂W

g(∇gc, �n) dσ, (25)

where�n is the exterior normal on∂W andσ the surface measure on∂W , and where we used
Stokes’ theorem.

3.5. Comments on drift, diffusion and underlying geometric structures

Thus, the mathematical representation of a diffusion phenomenon requires geometric
structures, like Riemannian metrics: if diffusion is seen as a surface term (a (n − 1)-form)
while a mass distribution is ann-form, a diffusion model “descends” fromn-forms towards
(n − 1)-forms; however, the exterior derivation d goes the other way round, and dualizing
d requires an additional structure such as a Riemannian metric.
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As to drift v and diffusion−k∇c, they appear distinctly in Eq.(19). However, this
decomposition is made possible by the flat structure ofR

3. Drift v and diffusion−∇gc also
appear in(24), and depend upong. Thus, such a decomposition between drift and diffusion
depends upon a Riemannian metric.

4. Geometric structures in deterministic interacting particles systems

Deterministic interacting particles systems are a source of diffusion models: limit equa-
tions for density often are parabolicpde s.

Our references here are the works of Spohn[8] (see also[9]).
Deterministic particles interacting in a potential are represented by a Hamiltonian

H =
∑

j

1

2mj

p2
j +

∑
i<j

Vij(qi − qj), (26)

where (qj, pj) ∈ Rd × Rd is the couple position-momentum of particlej with massmj,
andVij is a central potential (d = 3 in physical applications).

According to the way a parameterε appears in the Hamiltonian, one obtains different
‘Markovian limit models’ for ε ↓ 0, that is parabolicpde s satisfied by the probability
densityπ(q, p, t) of finding a given particle at point (q, p) at timet.

4.1. Lorentz gas

The Lorentz gas[8, p. 572] is a particle of massM moving through infinitely heavy
randomly distributed scatterersq1, q2, . . . (with uniform densityρ, whereρ ∈ R∗+). The
formal Hamiltonian is

H = 1

2M
p2 +

∑
j

V (q − qj). (27)

To the weak coupling limit[8, p. 574], characterized by the scaling

Vε(q) = ε1/2V (q/ε) and ρε = ε−dρ, (28)

one gets adiffusion resulting from numerous, but weak, collisions.
The probability densityπ(q, p, t) of finding the Lorentz particle at point (q, p) at timet

is given by the linear Landau equation[8, p. 575]:

∂

∂t
π(q, p, t) =


−p∇q + ρ

∑
i,j

∂

∂pi

Dij(p)
∂

∂pj


π(q, p, t). (29)

There exists a constantα (depending only onV) such that the “diffusion matrix” is given
by:

Dij(p) = α

2|p|
(

δij − pipj

|p|2
)

. (30)
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One may check that the symmetric matrix with general termDij(p) is degenerate since
p belongs to the kernel (in spherical coordinates, the diffusion term isρα

2|p|�|p|, where
�|p| is the Laplace–Beltrami operator on the sphere with radius|p|). The diffusion term
is thus degenerate and may not be deduced from a Riemannian metric on the space of
momentum.

4.2. Rayleigh’s gas

The Rayleigh’s gas[8, p. 579] is a particle of massM moving through a fluid consisting
of infinitely heavy randomly distributed scatterersq1, q2, . . . (with uniform densityρ, where
ρ ∈ R∗+) which are affected by collisions with the Rayleigh particle. The formal Hamiltonian
is

H = 1

2M
p2 +

∑
j

V (q − qj) +
∑

j

1

2m
p2

j +
∑
i<j

U(qi − qj). (31)

To the Brownian motion limit[8, p. 580], characterized by the scaling

Vε(q) = V (q/ε), ρε = ε−dρ, mε = ε2m, pj,ε = εpj (32)

one expects the probability densityπ(q, p, t) of finding the Rayleigh particle at point
(q, p) at time t to satisfy the Fokker–Planck equation of an Ornstein–Uhlenbeck
process

∂

∂t
π(q, p, t) =

(
− 1

M
p∇q + Dβ

M
∇p · p + D�p

)
π(q, p, t), (33)

in which D, the diffusive term, is a constant scalar (β is the inverse of the temperature of
the fluid).

This conjecture is proved in a limited number of cases, in particular on the real line for
an infinite system of hard balls with massm and a hard ball of massM, all of zero length
and evolving by elastic collision[8, p. 584].

4.3. Hydrodynamic limit

Up to now, Markovian limits are obtained by letting a physical parameter (interaction
force, fluid density, inverse of a mass) go to zero. They can also be obtained for long time
limits:

lim
ε↓0

εq
( t

ε2

)
. (34)

In [10, p. 171], one finds the first proper result ofconvergence of a purely de-
terministic dynamic system towards a Brownian motion: for a field of diffusing cen-
ters (hard spheres) periodic on a rectangle and with finite horizon (bounded mean
free length), properly normalized trajectories converge in law towards a Brownian
motion.
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For Lorentz gas and Rayleigh gas (test particle or system of particles), there are proofs
of convergence towards a Brownian motion in a limited number of cases.

4.4. Comments on drift, diffusion and underlying geometric structures

The models above all lead to parabolicpde s like (29) and (33). The underlying particle
evolves in the phase spaceRd × Rd with kinetic energyp2/2m: this corresponds to a
classical description in which the particle travels along straight lines between shocks, that
is along geodesics for the flat connection.

When, in addition, the density of scatterers is constant, the second-order term for the
Lorentz gas is proportional to 1/|p| times the Laplace–Beltrami operator�|p| on the sphere
with radius|p|. We have already pointed out that this diffusion term is degenerate and may
not be deduced from a Riemannian metric on the space of momentum. Other second-order
terms than the usual Laplacian are possible when the density of scatterers is not constant
[8, p. 575].

For the Rayleigh’s gas with constant density of scatterers, the diffusion term is propor-
tional to the usual Laplacian�p, thus inherited from the flat Riemannian metric and related
to the flat connection.

As to drift and diffusion, systems of interacting particles for which Markovian limits have
been studied do not possess drift forces that would act on all particles, but only interactions
between particles. Indeed, mathematically, the Hamiltonian is given by

H =
∑

j

1

2mj

p2
j +

∑
i<j

Vij(qi − qj) (35)

and not by

H =
∑

j

1

2mj

p2
j +

∑
i<j

Vij(qi − qj) +
∑

j

V (qj), (36)

where the last term would represent a force−∇qV which is not an interaction. Thus, with
available mathematical results on Markovian limits, one cannot apprehend how the drift
term

∑
j V (qj) and the interactions

∑
i<j Vij(qi − qj) would combine in a diffusion limit

model.

5. Geometric aspects of mathematical diffusion processes and stochastic
differential equations

We have briefly recalled in Section2 what is a diffusion process in probability theory,
and the links with stochastic differential equations. We here recall how diffusion processes
may be obtained as limits of randomly perturbed differential systems. This is an opportunity
to observe that the entangling of a “pure drift” with a “pure noise” is not a straightforward
operation. It is mediated through a formalism which may require geometric structures, such
as a connection or a Riemannian metric.
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5.1. Randomly perturbed differential systems as sources of diffusion processes

Our references here are the works of Papanicolaou[15,16]and of Kesten and Papanico-
laou[17,18]where it is shown that diffusion processes may be obtained as limit in law of
certain sequences of randomly linearly perturbedodes (ordinary differential equations).

5.1.1. Randomly linearly perturbed odes on Rn converge in law towards Stratonovich
sdes

Let f be a vector field onRn, and let us model random perturbations of theode ẋ = f (x)
as

dxε(t)

dt
= f (xε(t)) + 1

ε

m∑
i=1

gi(x
ε(t))UI

( t

ε2

)
, (37)

whereε > 0 and

• U1(t), . . . , Um(t) arem Markov processes (either with continuous trajectories or with
jumps), independent, stationary, with a unique invariant measure, with mean zero and
standart deviation 1;

• g1, . . . ,gm arem vector fields.

It is shown in [13, Chapter 10]that the sequence of processes (xε(t)) converges in
law, whenε ↓ 0, towards a diffusion with infinitesimal generator(12), that is to say con-
verges in law towards the solution (xt) of the followingsde (in Stratonovich sense, where
(B1

t , . . . , B
n
t )t≥0 is a Brownian motion):

dxt = f (xt) dt +
n∑

i=1

gi(xt) ◦ dBi
t. (38)

Thussde s in the Stratonovich sense appear as limit models ofodes with random indepen-
dent coefficients.

However, we shall see in what follows that this property is related to the linear way
according to which random perturbations drive theode in (37)and to their statistical inde-
pendence.

5.1.2. Randomly perturbed odes on a manifold converge in law towards diffusion
processes

There exists an extension of the above result in the more general framework of a smooth
manifold developed in[15, pp. 358–359].

Let be given a smooth manifoldM and

• a Markov processU(t) on a compact metric spaceS (either with continuous trajectories
or with jumps), stationary, with a unique invariant measure�,

• a familyf (·, u), u ∈ S of vector fields onM,
• a familyg(·, u), u ∈ S of vector fields onM.
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Assume thatg(·, ·) and� are related by

E�((g(·, U(0)))) =
∫

S

g(·, u) d�(u) ≡ 0

in the sense that, for all functionϕ ∈ C∞(M) and for allx ∈M, one has

E�(Lg(·,U(0))ϕ(x)) = E�(〈g(·, U(0)), dϕ〉(x)) =
∫

S

〈g(·, u), dϕ〉(x) d�(u) = 0.

Under regularity assumptions on the dependence inu ∈ S, it is shown in[15] that the
sequence of processes (xε(t)) defined as solutions of the followingodes (ε > 0)

dxε(t)

dt
= f

(
xε(t), U

( t

ε2

))
+ 1

ε
g
(
xε(t), U

( t

ε2

))
(39)

converge in law, whenε → 0, towards a diffusion process onM with generatorL. This
latter is defined on any functionϕ ∈ C∞(M) by

(Lϕ)(x) =
∫ +∞

0
dtE�(Lg(·,U(0))Lg(·,U(t))ϕ(x)) + E�(Lf (·,U(0))ϕ(x)). (40)

5.2. Comments on drift, diffusion and underlying geometric structures

With what we have just seen above, it appears that the entangling of a “pure drift” with
a “pure noise” is not a straightforward operation. It is mediated through a formalism which
may require geometric structures.

To illustrate this, let us consider a vector fieldf onRn. Adding a Brownian motion (Bt)t≥0
to theode

ẋ = f (x), x ∈ Rn (41)

gives asde

dxt = f (xt) dt + dBt. (42)

In this case, there is no ambiguity as to the meaning of dBt : Itô and Stratonovich integrals
coincide here.

However, this “Brownian motion addition” is intimately made possible by the linear
structure ofRn. Should we forget the linear structure, then the term “+dBt” would loose
sense. It might be replaced by

dxt = f (xt) dt +
m∑

j=1

gj(xt) dB
j
t , (43)

whereg1, . . . , gm are vector fields onRn. But, how should we chooseg1, . . . , gm? And
how should we interpret the above equation: with Itô or with Stratonovich integrals? With
which connection in the Itô case?

More generally, one can see the question of incorporating noise in aode as the
way of extending a first-order differential operator (or vector field) into a second-
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order one (or diffusion operator). Indeed, mathematically, things can be put this
way.

On the one hand, a diffusion process on a manifoldM with infinitesimal generator(9)
is a family (ξx)x∈M of Markov processes with continuous paths such that, for all smooth
functionϕ with compact support onM,

ϕ(ξx(t)) − ϕ(ξx(0)) −
∫ t

0
(Lϕ)(ξx(s)) ds = martingale. (44)

On the other hand, a dynamical system on a manifoldM with vector fieldf is a family of
trajectoriest ↪→ x(t) such that, for all smooth functionϕ with compact support onM,

ϕ(x(t)) − ϕ(x(0)) −
∫ t

0
(Lf ϕ)(x(s)) ds = 0. (45)

Moving from (45) to (44) may be seen as moving from the first-order differential operator
f, given by(5), to the second-order differential operatorL, given by(9). This consists in
particular in adding second-order terms tof. We shall see in the next section that such terms
are intimately related to a Riemannian structure.

To extract from a diffusion process a “pure noise” and a “pure drift” may be seen as to
move fromL (second-order partial differential operator) tof (vector field seen here as a first-
order partial differential operator). We shall see in the next section that such an operation
at least requires a connection.

6. Disentangling noise and dynamics

After having seen, in the previous sections, examples of how noise and dynamics entan-
gle, we now turn to the reverse problem.

Given a diffusion process, are there operations to disentangle noise and dynamics in it?
If such operations exist, are they related to specific geometric structures? What exactly is
the “drift” of a diffusion process ? In this section, we shall try and answer these questions.

6.1. The drift of a sde depends upon a connection

OnRn, the It̂o–Stratonovich conversion formula forsde s is well known[13, pp. 170–
171] and makes use of derivatives of the coordinates of the vector fieldsg1, . . . ,gm.

On a general manifoldM, equipped with a connection so that Itô integrals may be defined,
the Itô–Stratonovich conversion formula is given as follows[14].

Let g0, g1, . . . ,gm be vector fields on a smooth manifoldM, equipped with a covariant
derivativeD. The following twosde s are equivalent:

dYt = g0(Yt) dt +
m∑

l=1

gl(Yt) dBl
t,

dYt =
[
g0(Yt) − 1

2

m∑
l=1

Dgl
gl(Yt)

]
dt +

m∑
l=1

gl(Yt) ◦ dBl
t. (46)



M. De Lara / Journal of Geometry and Physics 56 (2006) 1215–1234 1229

The following twosde s are equivalent:

dZt = g0(Zt) dt +
m∑

l=1

gl(Zt) ◦ dBl
t,

dZt =
[
g0(Zt) + 1

2

m∑
l=1

Dgl
gl(Zt)

]
dt +

m∑
l=1

gl(Zt) dBl
t. (47)

Thus, the drift of asde depends upon the type of stochastic integral, Stratonovich or Itô,
and upon a connection.

6.2. You need a connection structure to extract a drift from a diffusion process

The decomposition of a diffusion process as the sum of a drift term and of a “purely
diffusive” term amounts to splitting a second-order differential operator into first- and
second-order parts:

1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj

+
n∑

i=1

bi(x)
∂

∂xi

= purely diffusive+ drift. (48)

But, as is stated by Emery in[12, p. 76]: second-order differential operator have no (in-
trinsic) first-order part.

Now, as seen in Section2.1, connections are in one-to-one correspondence with
C∞-linear mappingsF from fields of second-order differential operators on a smooth
manifold M towards those of order one, which satisfyF (L) = L if L is of order
one.

Thus, you need a connection to split a diffusion as the sum of a drift term and of a “purely
diffusive” term : see[12, pp. 105–109], where this discussion is related to the impossibility
of defining a martingale in a manifold without an additional structure[12, pp. 31–32].

6.3. A drift and a Riemannian metric may be intrinsically associated to a
nondegenerate diffusion operator

Let L be a nondegenerate diffusion operator on a smooth manifoldM, given by(9).
Assume thatL is smooth (the functionsaij(·), bi(·) are smooth) and nondegenerate elliptic
(the symmetric matrix (aij(x))i,j=1,...,n is positive definite for allx ∈ M).

Thanks to this assumption, it is well known that we can introduce a Riemannian metricg
onM as follows[6,11,20]. If (aij(x))i,j=1,...,n denotes the inverse matrix of (aij(x))i,j=1,...,n,
then

g =
n∑

i,j=1

aij(x) dxi dxj (49)

defines a Riemannian metricg onM.
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Moreover, if �g is the Laplace–Beltrami operator (Laplacian) on the Riemannian
manifold (M, g), there exists a unique smooth vector fieldf onM such thatL can be
written

L = 1
2�g + f. (50)

Note thatf depends not only onb1, . . . ,bn in (9) but also onaij, i, j = 1, . . . ,n.
Thus, the vector fieldf is a natural candidate as drift term. It is also the image ofL

by the Levi–Civita connectionFg intrinsically associated to the Riemannian metricg (see
Section2.2). Indeed,

Fg(L) = 1
2Fg(�g) + Fg(f ) = f (51)

sinceFg(�g) = 0 andFg(f ) = f , by (2) becausef is a first-order partial differential
operator (see Section2.1). This establishes a link with the connection of the previous
paragraph.

6.4. Laplacian, drift and Itô sde

The above vector fieldf may also be considered as the drift of ansde in Itô form. The
proof of the following proposition is given inAppendix A.

Proposition 6.1. Let (M, g) be a Riemannian manifold, admitting a (global) field of or-
thonormal frames, that is a family of vector fields g1,. . . , gm forming a basis such that
g(gi, gj) = δij. Let also f be a vector field onM.

Then, the following Itô sde on the Riemannian manifold (M, g)

dxt = f (xt) dt +
m∑

l=1

gl(xt) dBl
t (52)

generates a diffusion process with infinitesimal generator

L = 1
2�g + Lf . (53)

Note that the existence of a family of vector fieldsg1,. . . , gn such thatg(gi, gj) = δij

andn = dim(M) may be excluded for topological reasons (as on the sphereS2). In such a
case, the above result would not hold.

6.5. You cannot associate unambiguously the drift of a Stratonovich sde to a diffusion
process

For a given diffusion operatorL, there is no unique collectionf, g1,. . . , gm of vector
fields onM such that(12) holds true, that is, such thatL is the infinitesimal generator of
the diffusion process solution of the Stratonovichsde (10).
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6.6. You generally loose the drift when randomly perturbed ode s converge in law
towards a diffusion process

A vector field naturally emerges from the result of Section5.1.2. Indeed, the following
mapping which maps any functionϕ ∈ C∞(M) towards the function

x ∈M �→ E�(〈f (·, U(0)), dϕ〉(x)) = E�(Lf (·,U(0))ϕ(x)) (54)

has the characteristic properties of a vector field that we shall denote byE�(f (·, U(0))).
It is clear that, iff (·, u) does not depend onu ∈ S and is a simple vector fieldf, then

E�(f (·, U(0))) = f , and f should be a natural candidate for drift of a diffusion process
associated toL given by(40). However, things are not that simple.

Indeed, let us examine the second-order remaining partL − E�(f (·, U(0))): it maps any
functionϕ ∈ C∞(M) to the function

x ∈M �→
∫ +∞

0
dtE�(Lg(·,U(0))Lg(·,U(t))ϕ(x)). (55)

This mapping has the characteristic properties of a “second-order vector field”, that is of
a finite sum of termsAB andC, whereA, B andC vector fields[12, pp. 75–76]. However,
little more can be said of this term.

One can yet speak of the driftf in the specific case where the familyg(·, u) is linear in
u ∈ Rm

g(·, u) =
m∑

i=1

uigi (56)

and where the processU(t) has independent components with mean zero and variance one.
Indeed, the termL − E�(f (·, U(0))) is equal to1

2

∑m
j=1L

2
gj

. We have already noticed this
property in Section5.1.1.

Otherwise, the mixing made by noise does not allow to extract privileged directions
g1,. . . ,gm.

7. Conclusion

So far, after having studied Itô and Stratonovichsde s on manifolds, revisited different
models which lead to diffusion processes and examined operations to disentangle noise and
dynamics, we have encountered recurrent differential geometric structures: connections,
Riemannian metrics.

Indeed, defining an Itô sde on a manifold requires a connection, which appears as a
covariant derivative in a general Itô–Stratonovich conversion formula forsde s.

Indeed, the mathematical representation of a diffusion phenomenon requires geometric
structures, like Riemannian metrics: if diffusion is seen as a surface term (an (n − 1)-form)
while a mass distribution is ann-form, a diffusion model “descends” fromn-forms towards
(n − 1)-forms; however, the exterior derivation d goes the other way round, and dualizing
d requires an additional structure such as a Riemannian metric.
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Indeed, deterministic interacting particles systems like the Rayleigh gas exhibit Laplace–
Beltrami operators derived from Riemannian metrics.

Indeed, splitting a diffusion into a drift term with finite variation and a purely diffusive
term requires a connection (as the Levi–Civita connection associated to a Riemannian
metric).

Although our trip in various domains – Fick’s law, deterministic interacting particles
systems, diffusion processes and stochastic differential equations – does not lead to a unified
treatment (the question of drift for deterministic interacting particles systems is not treated
in Section6 for instance), it is however a source of various examples and arguments that
point towards the need of additional structures (connection, Riemannian metric) to model
noise entangled with continuous time dynamics.
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Appendix A. Proof of Proposition 6.1

Proof. By (46), the It̂o sde (52)may also be written as

dxt =
(

f − 1

2

m∑
l=1

Dgl
gl

)
(xt) dt +

m∑
l=1

gl(xt) ◦ dBl
t

and its infinitesimal generatorL is therefore, by Section6.1,

L = 1

2

m∑
l=1

L2
gl

+ Lf − 1

2

m∑
l=1

LDgl
gl

. (A.1)

We have for all smooth functionϕ

∇gϕ =
{∑m

l=1 g(∇gϕ, gl)gl sinceg1, . . . , gk are orthonormal∑m
l=1(Lgl

ϕ)gl sinceg(∇gϕ, gl) = 〈dϕ, gl〉 = Lgl
ϕ.

Therefore, since

divg([X, Y ]) = X · (divg Y ) − Y · (divg X) = LX(divg Y ) − LY (divg X)
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for any vector fieldsX, Y, we have

�gϕ = divg(∇gϕ) =
m∑

l=1

L2
gl

ϕ +
m∑

l=1

(divg gl)Lgl
ϕ.

Thus,L given by(A.1) becomes

L = 1

2
�g + f − 1

2

(
m∑

l=1

Dgl
gl +

m∑
l=1

(divg gl)gl

)
.

There remains to prove that the last term is zero, that is

m∑
l=1

(divg gl)gl = −
m∑

l=1

Dgl
gl,

and this amounts to proving that the coefficients of−∑m
l=1 Dgl

gl in the orthonormal frame
g1,. . . ,gm are divg g1,. . . , divg gm.

Now, sinceg(gl, gk) = δlk, we obtain, by applingDgk
to this equality,

g(Dgk
gl, gk) + g(gl, Dgk

gk) = 0, (A.2)

since the Levi–Civita connectionD satisfiesDg = 0. We thus get, with classical differential
geometry formulas[19]:

divg gl =




−tr(Agl
)

m∑
k=1

g(Dgk
gl, gk) sinceAgl

gk = Dgk
gl

−
m∑

k=1

g(gl, Dgk
gk) by (A.2)

g

(
gl, −

m∑
k=1

Dgk
gk

)
.

This ends the proof. �
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